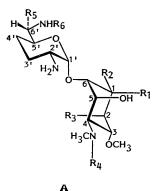
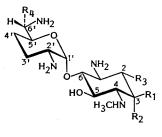
# BIOSYNTHETIC SIMILARITY BETWEEN STREPTOMYCES TENJIMARIENSIS AND MICROMONOSPORA OLIVASTEROSPORA WHICH PRODUCE FORTIMICIN-GROUP ANTIBIOTICS

### KUNIMOTO HOTTA, MOTO MORIOKA<sup>†</sup> and YOSHIRO OKAMI<sup>†</sup>

National Institute of Health, 2-10-35 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan <sup>†</sup>Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan


(Received for publication November 16, 1988)


The profile of bioconversion products of istamycin (IS) components by a blocked IS mutant of *Streptomyces tenjimariensis* that lost IS-productivity suggested a possible biosynthetic pathway of IS similar to that of fortimicin (FT) by *Micromonospora olivasterospora*. Both organisms are resistant to the antibiotics produced by each other. Based on these similarities, they were examined for their capability to convert an FT-intermediate (FT-B) and IS-intermediates (IS-A<sub>0</sub> and -B<sub>0</sub>) through their biosynthetic pathways. *S. tenjimariensis* formed 1-*epi*-FT-B, 2"-*N*-formimidoyl-FT-A (=dactimicin) and 1-epidactimicin (a new antibiotic) from FT-B. On the other hand, *M. olivasterospora* converted IS-A<sub>0</sub> and -B<sub>0</sub> to 2"-*N*-formimidoyl-IS-A (=IS-A<sub>3</sub>) and -B (=IS-B<sub>3</sub>), respectively. Thus, the similarity in antibiotic biosynthesis was confirmed between these FT-group antibiotic-producing organisms. It was also found that the major fermentation product of *M. olivasterospora* is not FT-A (astromicin) but dactimicin.

By taking advantage of low substrate-specificity of enzymes involved in antibiotic biosynthesis, directed conversion or incorporation of specific compounds to new antibiotics has been successfully attempted in various actinomycete strains that produce antibiotics<sup>1-3)</sup>. One such attempt was the biosynthetic conversion of foreign antibiotics (kanamycins; KM's) to new antibiotics (combinicins) with a gentamicin (GM)-producing *Micromonospora* strain<sup>4)</sup>. This conversion by the GM-biosynthetic enzymes was attempted based on the structural similarity between KM and a GM-intermediate so that KM might be transformed by GM-biosynthetic enzymes. Resistance to KM by the GM-producing *Micromonospora* is probably a key point since it seems unlikely that the organism is capable of metabolizing KM if it is sensitive to KM. GM-producing strains of *Micromonospora* have been known to be resistant to KM<sup>5,6)</sup>.

Istamycins (IS's) are produced by *Streptomyces tenjimariensis*<sup>7,8)</sup> and share a pseudodisaccharide moiety with fortimicin (FT) produced by *Micromonospora olivasterospora*<sup>9~11)</sup> (Fig. 1). This structural similarities suggest a similarity in the antibiotic biosynthetic pathways and a possible resistance to each antibiotic by the producers. We attempted the conversion of intermediates of both IS and FT by *M. olivasterospora* and *S. tenjimariensis*. It was our special interest whether *S. tenjimariensis* could form a new antibiotic (1-epidactimicin; EDC) from FT components because only this organism has been known to produce epimers in terms of NH<sub>2</sub> group at C-1 position as shown in Fig. 1. As expected, bioconversion experiments verified the biosynthetic similarity between these two organisms and resulted in the formation of EDC from FT-B by *S. tenjimariensis*. It was also found

Fig. 1. Structures of antibiotics studied.





в

| Basic<br>structure | Antibiotic          | R                 | $\mathbf{R}_2$  | R <sub>8</sub> | $\mathbf{R}_4$                    | R <sub>5</sub>  | $\mathbf{R}_{6}$ |
|--------------------|---------------------|-------------------|-----------------|----------------|-----------------------------------|-----------------|------------------|
| A                  | IS-A <sub>0</sub>   | NH <sub>2</sub>   | Н               | Н              | Н                                 | Н               | CH <sub>3</sub>  |
|                    | IS-A                | $\mathbf{NH}_2$   | н               | H              | $COCH_2NH_2$                      | H               | $CH_3$           |
|                    | $IS-A_3$            | $\mathbf{NH}_2$   | н               | H              | COCH <sub>2</sub> NHCH=NH         | H               | $CH_3$           |
|                    | IS-B <sub>0</sub>   | н                 | $\mathbf{NH}_2$ | H              | н                                 | н               | $CH_3$           |
|                    | IS-B                | H                 | $\mathrm{NH}_2$ | Н              | $\rm COCH_2 NH_2$                 | Н               | $CH_3$           |
|                    | $IS-B_3$            | H                 | $\mathbf{NH}_2$ | н              | COCH₂NHCH=NH                      | Н               | CH <sub>3</sub>  |
|                    | FT-A                | $\mathbf{NH}_2$   | Н               | OH             | COCH <sub>2</sub> NH <sub>2</sub> | CH <sub>3</sub> | H                |
|                    | FT-B                | $\rm NH_2$        | н               | OH             | н                                 | $CH_3$          | Н                |
|                    | 1- <i>epi-</i> FT-B | H .               | $\mathbf{NH}_2$ | OH             | Н                                 | $CH_3$          | Н                |
|                    | DC                  | $\mathbf{NH}_{2}$ | $\mathbf{H}$    | OH             | COCH₂NHCH=NH                      | $CH_3$          | Н                |
|                    | EDC                 | H                 | $\rm NH_2$      | OH             | COCH <sub>2</sub> NHCH=NH         | $CH_3$          | н                |
| В                  | $IS-Y_0$            | $OCH_3$           | H               | н              | н                                 |                 |                  |
|                    | $IS-X_0$            | н                 | $OCH_3$         | Н              | Н                                 |                 |                  |
|                    | FT-KH               | $OCH_3$           | Н               | OH             | $CH_3$                            |                 |                  |
|                    | FT-KR               | н                 | $OCH_3$         | OH             | $CH_3$                            |                 |                  |

IS: Istamycin, FT: fortimicin, DC: dactimicin, EDC: 1-epidactimicin.

that the major fermentation product of *M. olivasterospora* was not FT-A (astromicin) but dactimicin (DC) which was first reported with *Dactylosporangium matsuzakiense*<sup>12,13)</sup>.

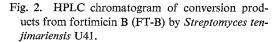
#### Materials and Methods

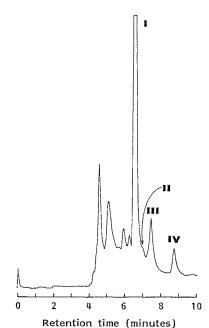
### Strains Used

S. tenjimariensis U41 is a blocked mutant of IS-biosynthesis obtained by UV-irradiation of ISproducing strain SS-1507. This strain is able to produce a small amount of IS-Y<sub>0</sub> and -X<sub>0</sub> but no detectable amount of other IS components such as IS-A<sub>3</sub> and -B<sub>3</sub> known as major fermentation products of the parental strain SS-1507. The strains U41 and FT-producing *M. olivasterospora* ATCC 21819 were used for conversion experiments.

## IS's and FT's

IS's (Fig. 1) were obtained from Dr. S. KONDO, Institute of Microbial Chemistry. FT's and DC were prepared from the cultured broth of M. olivasterospora as described elsewhere<sup>14</sup>).


# Conversion of IS's and FT-B


For conversion of IS components and FT-B, S. tenjimariensis U41 was first cultivated with rotary shaking (180 rpm) at 27°C for 3 days in a liquid medium (100 ml; pH 7.0) consisting of the following; corn gluten meal 5.0%, wheat germ 2.0%, CaCO<sub>3</sub> 0.6% and MgSO<sub>4</sub>·7H<sub>2</sub>O 0.05%. This culture

(1 ml) was transferred into an IS fermentation medium (100 ml; pH 7.0) consisting of wheat germ 6.5%, soy bean oil 3.5%, sodium palmitate 0.05%, CaCO<sub>3</sub> 0.6% and MgSO<sub>4</sub>·7H<sub>2</sub>O 0.05%. After incubation at 27°C for 3 days with rotary shaking, an IS component (Y<sub>0</sub>, X<sub>0</sub>, A<sub>0</sub>, B<sub>0</sub>, A, B,  $A_3$  or  $B_3$ ) or FT-B was added to the culture at 200  $\mu$ g/ml. The incubation was continued for 7 more days. In case of M. olivasterospora, strain ATCC 21819 was shake-cultured at 27°C for 3 days in a medium (100 ml; pH 7.0) consisting of potato starch 2.0%, soy bean meal 2.0%,  $MgSO_4 \cdot 7H_2O$  0.1%, NaCl 0.3% and  $KH_2PO_4$ 0.1%. This seed culture (1 ml) was transferred into an FT fermentation medium (100 ml; pH 7.0) consisting of dextrin 5.0%, soy bean meal 3.5%, soy bean oil 1.0%,  $KH_2PO_4$  0.3%, Na<sub>2</sub>HPO<sub>4</sub>·12H<sub>2</sub>O 0.7%, CaCO<sub>3</sub> 0.7% and CoCl<sub>2</sub>  $0.25 \times 10^{-4}$ % and incubated on a rotary shaker (180 rpm) at 27°C. For conversion of IS's by the strain ATCC 21819, IS-A<sub>0</sub> or IS-B<sub>0</sub> at 200  $\mu$ g/ml was added after 3 days of fermentation and the incubation was continued at 27°C for 2 or 3 days.

Analysis of Products of Conversion and Fermentation

Cultured broths were adjusted to pH 2 with HCl and filtered. The resultant filtrate was





Retention times of peaks I, II, III and IV were identical with those of FT-B, 1-*epi*-FT-B, dactimicin and 1-epidactimicin, respectively.

neutralized (pH 6.0) with NaOH and passed through a column of Amberlite IRC-50 (Na<sup>+</sup> - H<sup>+</sup>, 7:3). The adsorbed IS or FT compounds were eluted with 0.5 N H<sub>2</sub>SO<sub>4</sub>. After adjusted to pH 5.5 and concentrated, the resulting precipitate was removed from the eluate. Then the eluate was analyzed with a reverse-phase HPLC (Fig. 2) using a column of YMC gel ODS-5  $\mu$  (Yamamura Chemical Co., Japan) and an eluant, 4% aqueous acetonitril, containing 0.02 M sodium-1-pentasulfonate, 0.2 M sodium sulfate and 0.1% acetic acid. Antibiotics eluted were monitored by UV absorption at 344 nm following *o*-phtalaldehyde reaction of the eluate in boric acid (pH 10). Structures of the products were further analyzed by NMR using Jeol JNM-GX400, if appropriate<sup>14</sup>.

## Results

### Conversion of IS's by S. tenjimariensis

The IS components produced by *S. tenjimariensis* SS-1507 were tested for conversion by the ISnonproducing mutant, U41 (Table 1). Conversion products, IS-A<sub>3</sub>, -B<sub>3</sub>, -A<sub>0</sub> and -B<sub>0</sub> were detected from almost all substrates except for IS-A and -B. Formation of these four compounds from each other suggested a sort of biosynthetic network among these compounds. By contrast, IS-Y<sub>0</sub> was not formed from any other IS compound as substrate. Instead, it was converted to all the IS compounds but IS-A and -B. IS-X<sub>0</sub> was formed only from IS-Y<sub>0</sub> and converted clearly to IS-A<sub>3</sub>, -B<sub>3</sub>, -A<sub>0</sub> and -B<sub>0</sub>. On the other hand, a small amount of IS-A and -B were detected in almost all cultured broths. However, their formation seemed to be due to chemical decomposition by elevated pH of the cultured broth, but not to enzymatic reaction, because IS-A<sub>8</sub> and -B<sub>3</sub> are known to be easily

#### THE JOURNAL OF ANTIBIOTICS

| Substrate<br>(istamycins) | Conversion product (istamycins) |                |                |                       |            |                |   |     |  |
|---------------------------|---------------------------------|----------------|----------------|-----------------------|------------|----------------|---|-----|--|
|                           | Y <sub>0</sub>                  | X <sub>0</sub> | $\mathbf{A}_0$ | <b>B</b> <sub>0</sub> | A          | B <sub>3</sub> | A | В   |  |
| Y <sub>0</sub>            | $\sim$                          | <br>_ +++      | +++            | +++                   | <br>+-+-+- | +++            |   | -+- |  |
| $\mathbf{X}_{0}$          |                                 |                | +++            | +++                   | +++        | +++            | + | +   |  |
| $\mathbf{A}_{0}$          | -                               | _              |                | +++                   | +++        | +++            | + | +   |  |
| $\mathbf{B}_{0}$          |                                 | —              | ±              |                       | +          | +++            | + | +   |  |
| $\mathbf{A}_3$            |                                 |                | +++            | +++                   |            | +++            | + | +   |  |
| $\mathbf{B}_3$            |                                 |                | 土              | +++                   | +++        |                | + | +-  |  |
| Α                         | -                               | —              | _              | _                     | _          | -              |   |     |  |
| в                         | _                               |                | _              | _                     | _          | ·              | - |     |  |

Table 1. Conversion products of istamycins by Streptomyces tenjimariensis.

Conversion of istamycin components was expressed with  $+ \sim + + +$  according to the relative amount of conversion products formed.  $\pm$ : Variable detection, -: no formation.

Table 2. Ratio of A type istamycins to B type istamycins in the fermentation broth of *Streptomyces* tenjimariensis.

| Incubation temperature | 11-I | Day incubation | 14-Day incubation |     |     |     |
|------------------------|------|----------------|-------------------|-----|-----|-----|
|                        | A    | В              | B/A               | A   | В   | B/A |
| 27°C                   | 1.0  | 0.8            | 0.8               | 1.2 | 0.7 | 0.6 |
| 30°C                   | 1.3  | 2.6            | 2.0               | 1.6 | 2.6 | 1.6 |

Relative values of A and B types of istamycin to A type istamycins (1.0) accumulated by 11-day incubation were scored.

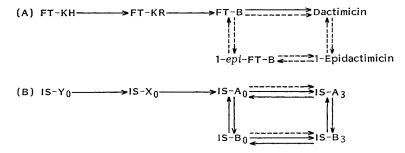
# decomposed to IS-A and -B in alkaline pH<sup>8)</sup>.

In relation to conversion to epimeric compounds (A and B types) in terms of  $NH_2$  group at C-1 position, it was found that accumulation ratio of these epimers in fermentation broth of IS-producing strain SS-1507 varied depending on incubation temperature. As shown in Table 2, accumulation of A type was higher than that of B type when incubated at 27°C and *vice versa* at 32°C.

# Conversion of Intermediates of Foreign Antibiotics

The conversion experiments of IS components suggested that the biosynthetic pathway of IS was very similar to that of FT. Therefore, it seemed likely that intermediates of IS and FT could be converted to antibiotic substances by the FT (*M. olivasterospora*) and IS (*S. tenjimariensis*) producers. Both producers were then examined for their resistance to FT-A and IS-A which seemed to be another key factor for this conversion. These organisms showed a high resistance (at least 200  $\mu$ g/ml) to both IS-A and FT-A in fermentation media.

Another point to note in this attempt was that formation of EDC from FT-B could be expected by the epimerase activity of *S. tenjimariensis* if FT-B was transformed through IS-biosynthetic pathway. Bioconversion results are summarized in Table 3. *S. tenjimariensis* U41 formed DC and EDC from FT-B as expected. On the other hand, *M. olivasterospora* accumulated only IS-A<sub>3</sub> and IS-B<sub>3</sub> from IS-A<sub>0</sub> and IS-B<sub>0</sub>, respectively, in a detectable amount as expected. No detectable IS-A or IS-B was accumulated. The accumulation of formimidoylated-IS compounds (IS-A<sub>3</sub> and -B<sub>3</sub>) was unexpected since the reported biosynthetic pathway of FT<sup>15,16)</sup> did not involve any formimidoylated compounds. Then, we analyzed the fermentation products of *M. olivasterospora*. It turned out that only FT-B and DC and not FT-A were detected (Table 3). Similarly, IS-producing *S. tenjimariensis* SS-1507 did not accumulate IS-A and -B but IS-A<sub>3</sub>, -B<sub>3</sub>, -A<sub>0</sub> and -B<sub>0</sub> as we reported previously<sup>8)</sup>.


| Table 3. | Products of conversion an | nd fermentation by | Streptomyces tenjimariensis and Micromonospora |
|----------|---------------------------|--------------------|------------------------------------------------|

olivasterospora.

|                   | S. tenji   | imariensis   | M. olivasterospora |                   |                |  |
|-------------------|------------|--------------|--------------------|-------------------|----------------|--|
| Product           | Conversion |              | Conve              |                   |                |  |
|                   | FT-B       | Fermentation | IS-A <sub>0</sub>  | IS-B <sub>0</sub> | - Fermentation |  |
| IS-A <sub>0</sub> |            | ++           | 1                  |                   |                |  |
| $IS-B_0$          |            | +            |                    | /                 |                |  |
| IS-A <sub>3</sub> |            | -+-+-        | +                  | _                 | _              |  |
| IS-B <sub>8</sub> | -          | ++           | _                  | +                 |                |  |
| FT-A              |            | _            |                    |                   | _              |  |
| FT-B              | 1          |              |                    | _                 | ++             |  |
| 1-epi-FT-B        | +          | _            | _                  |                   | _              |  |
| DC                | +          | -            | _                  |                   | + + +          |  |
| EDC               | +          | ~            | _                  | _                 |                |  |

IS: Istamycin, FT: fortimicin, DC: dactimicin, EDC: 1-epidactimicin.

Fig. 3. Possible biosynthetic pathways of fortimicins and istamycins.



- (A) Fortimicin (FT) biosynthesis by Micromonospora olivasterospora. Dotted line: Conversion by Streptomyces tenjimariensis.
- (B) Istamycin (IS) biosynthesis by S. tenjimariensis. Dotted line: Conversion by M. olivasterospora.

### Discussion

Conversion experiments of IS components by S. tenjimariensis suggested a possible pathway of the later steps of IS biosynthesis. As shown in Fig. 3, the pathway from  $IS-Y_0$  to  $IS-A_3$  is very similar to that of FT-biosynthesis<sup>15,16</sup>). However, the pathway does not involve IS-A and -B, although they were detected in a small amount. Formation of these two substances could be due to chemical degradation of IS-A<sub>3</sub> and -B<sub>2</sub> probably by a relatively long exposure to the elevated pH of the cultured broth. In the early stage of our study on the isolation of fermentation products of S. tenjimariensis, we reported that IS-A and -B were the major products<sup>7</sup>). However, we found later that IS-A and -B were not metabolic products but chemical degradation products of true major fermentation products (IS-A<sub>3</sub> and  $-B_3$ )<sup>6)</sup>. Both IS-A<sub>3</sub> and  $-B_3$  are so unstable in alkaline solution that IS-A,  $-B_1$ ,  $-A_1$ ,  $-B_1$ ,  $-A_2$  and  $-B_2$ can be detected if alkaline solution such as ammonium hydroxide is used for elution of fermentation products adsorbed to cation exchange resin. Thus, minimizing exposure of IS fermentation products to alkaline pH resulted in the exclusive detection of  $IS-A_3$ ,  $-B_3$ ,  $-A_0$  and  $-B_0$  as shown in Table 3. This was also true in M. olivasterospora ATCC 21819. This strain did not form FT-A type compounds in both conversion of IS's (IS-A<sub>0</sub> and -B<sub>0</sub>) and FT fermentation, but formimidoylated compounds; *i.e.* IS-A<sub>3</sub> and -B<sub>3</sub> by conversion of IS compounds and dactimicin (=2''-N-formimidoyl-FT-A) and FT-B by fermentation. Distinct difference in the antibiotic biosynthetic pathways of S. tenjimariensis

from M. olivasterospora is the production of epimers. Because of the epimerase activity of S. tenjimariensis, the final steps of IS-biosynthesis will form a kind of metabolic grid as shown in Fig. 3. Neither M. olivasterospora nor any other FT-group antibiotic producer has been known to produce epimers of their antibiotics. This fact was one of the basis for our speculation that a new antibiotic (EDC) would be formed from FT-B by S. tenjimariensis. Based on our study<sup>17)</sup>, the resistance mechanism of S. tenjimariensis to FT-group antibiotics seems to be dependent on ribosomal resistance and not to inactivating enzymes. This was another basis of our attempt. If the biochemical basis of the resistance was dependent upon an inactivating enzyme, conversion of foreign antibiotics might result in the formation of inactivated substances. The same situation can be seen in the GM-producing strain of Micromonospora which produces combinicins from KM's. The resistance mechanism of a GM-producing strain of Micromonospora<sup>6)</sup> has been known to depend upon ribosomal resistance. It should be also noted that S. tenjimariensis failed to convert aminoglycoside antibiotics other than the FT-group to antibiotic compounds, although the organism was resistant to these antibiotics (unpublished data). Furthermore, the GM-producing Micromonospora strain, which was used for the production of combinicins from KM, failed to convert neamine which has a structural similarity to GM (unpublished data). This failure could be related with the sensitivity to neamine of the strain. In a deoxystreptamine-negative mutant of Micromonospora inyoensis which produces sisomicin, conversion of neamine to sisomicin has been reported<sup>18)</sup>. However, the conversion rate from neamine was much lower than that from paromamine. This difference might also be due to the difference in the resistance to paromamine and neamine of the sisomicin producer. Thus, both structural similarity and resistance mechanisms as well as the substrate specificity of biosynthetic enzymes should be key factors for antibiotic-producing actinomycetes to convert foreign antibiotics to novel antibiotics.

Although successful, the conversion rate of FT-B to DC and EDC by S. tenjimariensis was as low as 1% as in the case of mutasynthesis or combinicins. This low conversion rate may be improved by establishing the suitable conditions for the conversion or by strain improvement. A promising strain improvement will be the construction by gene technology of FT-producing M. olivas-terospora which contains genes directing the synthesis of IS-biosynthetic enzymes.

#### Acknowledgments

We are grateful to Dr. S. KONDO for istamycins and the Late Prof. H. UMEZAWA for encouragement.

#### References

- DEMAIN, A. L.: Production of new antibiotics by directed biosynthesis and by the use of mutants. In The Future of Antibiotherapy and Antibiotic Research. Ed., L. NINET et al., pp. 417~435, Academic Press, London, 1981
- 2) RINEHART, K. L., Jr.: Mutasynthesis of new antibiotics. Pure Appl. Chem. 49: 1361~1384, 1977
- OKAMI, Y. & K. HOTTA: Search and discovery of new antibiotics. In Actinomycetes in Biotechnology. Ed., M. GOODFELLOW et al., pp. 33~67, Academic Press, London, 1988
- OKA, Y.; H. ISHIDA, M. MORIOKA, Y. NUMASAKI, T. YAMAFUJI, T. OSONO & H. UMEZAWA: Combinicins, new kanamycin derivatives bioconverted by some *Micromonosporas*. J. Antibiotics 34: 777~781, 1981
- HOTTA, K.; A. TAKAHASHI, N. SAITO, Y. OKAMI & H. UMEZAWA: Multiple resistance to aminoglycoside antibiotics in actinomycetes. J. Antibiotics 36: 1748~1754, 1983
- PIENDL, W. & A. BÖCK: Ribosomal resistance in the gentamicin producer organism Micromonospora purpurea. Antimicrob. Agents Chemother. 22: 231~236, 1982
- OKAMI, Y.; K. HOTTA, M. YOSHIDA, D. IKEDA, S. KONDO & H. UMEZAWA: New aminoglycoside antibiotics, istamycins A and B. J. Antibiotics 32: 964~966, 1979
- KONDO, S.; Y. HORIUCHI, D. IKEDA, S. GOMI, K. HOTTA, Y. OKAMI & H. UMEZAWA: 2"-N-Formimidoylistamycin A and B produced by *Streptomyces tenjimariensis*. J. Antibiotics 35: 1104~1106, 1982
- NARA, T.; M. YAMAMOTO, I. KAWAMOTO, K. TAKAYAMA, R. OKACHI, S. TAKASAWA, T. SATO & S. SATO: Fortimicins A and B, new aminoglycoside antibiotics. I. Producing organism, fermentation and biological properties of fortimicins. J. Antibiotics 30: 533~540, 1977
- 10) OKACHI, R.; S. TAKASAWA, T. SATO, S. SATO, M. YAMAMOTO, I. KAWAMOTO & T. NARA: Fortimicins A

751

and B, new aminoglycoside antibiotics. II. Isolation, physico-chemical and chromatographic properties. J. Antibiotics  $30:541 \sim 551,1977$ 

- 11) EGAN, R. S.; R. S. STANASZEK, M. CIROVIC, S. L. MUELLER, J. TADANIER, J. R. MARTIN, P. COLLUM, A. W. GOLDSTEIN, R. L. DE VAULT, A. C. SINCLAIR, E. E. FAGER & L. A. MITSCHER: Fortimicins A and B, new aminoglycoside antibiotics. III. Structural identification. J. Antibiotics 30: 552~563, 1977
- 12) SHOMURA, T.; M. KOJIMA, J. YOSHIDA, M. ITŌ, S. AMANO, K. TOTSUGAWA, T. NIWA, S. INOUYE, T. ITÕ & T. NIIDA: Studies on a new aminoglycoside antibiotic, dactimicin. I. Producing organism and fermentation. J. Antibiotics 33: 924~930, 1980
- 13) OHBA, K.; T. TSURUOKA, K. MIZUTANI, N. KATO, S. OMOTO, N. EZAKI, S. INOUYE, T. NIIDA & K. WATANABE: Studies on a new aminoglycoside antibiotic, dactimicin. II. Isolation, structure and chemical degradation. J. Antibiotics 34: 1090~1100, 1981
- 14) MORIOKA, M.; K. HOTTA, D. IKEDA, H. NAGANAWA, M. HAMADA & Y. OKAMI: 1-Epidactimicin, a new aminoglycoside antibiotic converted from fortimicin B by a blocked mutant of istamycin-producing Streptomyces tenjimariensis. J. Antibiotics 42: 831~833, 1989
- 15) ITOH, S.; Y. ODAKURA, H. KASE, S. SATOH, K. TAKAHASHI, T. IIDA, K. SHIRAHATA & K. NAKAYAMA: Biosynthesis of astromicin and related antibiotics. I. Biosynthetic studies by bioconversion experiments. J. Antibiotics 37: 1664~1669, 1984
- 16) ODAKURA, Y.; H. KASE, S. ITOH, S. SATOH, S. TAKASAWA, K. TAKAHASHI, K. SHIRAHATA & K. NAKAYAMA: Biosynthesis of astromicin and related antibiotics. II. Biosynthetic studies with blocked mutants of *Micro-monospora olivasterospora*. J. Antibiotics 37: 1670~1680, 1984
- 17) YAMAMOTO, H.; K. HOTTA, Y. OKAMI & H. UMEZAWA: Ribosomal resistance of an istamycin producer, Streptomyces tenjimariensis, to aminoglycoside antibiotics. Biochem. Biophys. Res. Commun. 100: 1396~1401, 1981
- TESTA, R. T. & B. C. TILLEY: Biotransformation, a new approach to aminoglycoside biosynthesis. I. Sisomicin. J. Antibiotics 28: 573~579, 1975